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Abstract. We study deeply virtual Compton scattering and deep exclusive meson electroproduction on
a deuteron target. We model the generalized quark distributions in the deuteron by using the impulse
approximation for the lowest Fock-space state on the light cone. We study the properties of the resulting
GPDs, and verify that sum rules violations are quite small in the impulse approximation. Numerical
predictions are given for the unpolarized cross-sections and polarization asymmetries for the kinematical
regimes relevant for JLab experiments and for HERMES at HERA. We conclude that the signal of coherent
scattering on the deuteron is comparable to the one on the proton at least for low momentum transfer,
providing support to the feasibility of the experiments. The short-distance structure of the deuteron may
thus be scrutinized in the near future.

PACS. 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 12.38.Bx Perturbative cal-
culations – 25.30.-c Lepton-induced reactions

1 Introduction

The study of hard exclusive processes, such as deeply Vir-
tual Compton Scattering (DVCS),

eA → e′γA′ (1)

and deep exclusive meson electroproduction (DEMP)

eA → e′MA′, (2)

where A is a hadron (usually a nucleon, here a deuteron),
andM a meson (usually a ρ or a π) or a pair of mesons (of
relatively small invariant mass) in the kinematical domain
of a large momentum transfer Q2 between the leptons but
a small momentum transfer (t) between the hadrons, has
been recently demonstrated to open the possibility of ob-
taining a quite complete picture of the hadronic structure.
The information which can be accessed through these ex-
periments is encoded by the generalized parton distribu-
tions, GPDs [1,2] (for recent reviews see [3]), which give in
particular information on the transverse location of quarks
in the hadrons [4]. Recent measurements of the azimuthal
dependence of the beam spin asymmetry in DVCS [5,6]
have provided experimental evidence to support the valid-
ity of the formalism of GPDs and the underlying QCD fac-
torization of short-distance and long-distance dominated
subprocesses.

a e-mail: pire@cpht.polytechnique.fr

The theoretical arguments used in deriving factoriza-
tion theorems in QCD for the nucleon [7] target case can
be applied to the deuteron case as well, and therefore one
can develop the formalism of GPDs for the deuteron [8].
From the theoretical viewpoint, it is the simplest and best
known nuclear system and represents the most appropri-
ate starting point to investigate hard exclusive processes
off nuclei [9]. On the other hand, these processes could of-
fer a new source of information about the partonic degrees
of freedom in nuclei, complementary to the existing one
from deep inelastic scattering. Experimentally, deuteron
targets are quite common and as a matter of fact, DVCS
experiments are being planned or carried out at facili-
ties like CEBAF at JLab and HERMES at HERA, where
some data have already been released [10]. One should,
of course, distinguish the case where the deuteron serves
merely as a source of slightly bound protons and neutrons
from the case where the deuteron acts as a single hadron.
In the former case, the scattering is incoherent and the
deuteron will break up during the reaction. In the latter
case, to which we devote our study, the deuteron stays
intact after the scattering. The fact that this occurs in a
non-negligible fraction of events is not evident to every-
body, since it is usual, but uncorrect, to mix the concepts
of hard and destructive reactions. Indeed, as estimates
given below will show, the very nature of deep electropro-
duction in the forward region is that the target is not vi-
olently shattered by the hard probe. The fragile nature of
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the deuteron thus does not prevent it from staying intact.
This picture should, of course, be experimentally tested
through the comparison of rates for coherent and inco-
herent electroproduction. The need for a deuteron recoil
detector is primordial in this respect.
The paper is organized as follows: in sect. 2 we remind

the reader of the formalism of generalized parton distribu-
tions for spin-1 targets in general and the deuteron in par-
ticular. In sect. 3, we explain in detail the construction of
the impulse approximation to evaluate the helicity ampli-
tudes and in sect. 4 we derive the deuteron GPDs from the
helicity amplitudes and study the properties and implica-
tions with a numerical model. In sect. 5 we give the useful
formulae for calculating the DVCS cross-section. In sect. 6
we show our numerical estimates for the usual observables
in the DVCS case and comment on the feasibility of ex-
periments. In sect. 7 we examine the electroproduction of
mesons. Througout the paper we will limit ourselves to
the quark sector of the GPDs, which is a good approxi-
mation provided the Bjorken variable xBj is not too small.
This variable is defined as usual as xBj = Q2

2P ·q , i.e., it is
given in lab frame by xBj = Q2

2Mν , whereM is the deuteron
mass and ν the virtual photon energy. Gluon effects will
be needed for understanding higher-energies experiments.
Previous short reports on our results have been presented
at recent conferences [11].

2 GPDs in the deuteron: definitions and basic
properties

A parameterization of the non-perturbative matrix el-
ements which determine the amplitudes in DVCS and
DEMP on a spin-one target was given in terms of nine
GPDs for the quark sector [8]:

Vλ′λ =
∫
dκ
2π

eixκ2P̄ ·n〈P ′, λ′| ψ̄(−κn) γ · nψ(κn) |P, λ〉

=
∑
i=1,5

ε′∗βV (i)
βα εαHi(x, ξ, t), (3)

Aλ′λ =
∫
dκ
2π

eixκ2P̄ ·n〈P ′, λ′| ψ̄(−κn) γ · nγ5 ψ(κn) |P, λ〉

=
∑
i=1,4

ε′∗βA(i)
βα εα H̃i(x, ξ, t), (4)

where |P, λ〉 represents a deuteron state of momentum P
and polarization λ, P̄ = (P + P ′)/2, and nµ is a light-
like vector with n+ = 0, n⊥ = 0. Due to the spin-one
character of the target, there are more GPDs than in
the nucleon case, but at the same time the set of po-
larization observables which in principle could be mea-
sured is also richer. Not much is known about these non-
perturbative objects which encode the way quarks are con-
fined in deuterons, except a limited set of sum rules and
some limiting case values. Sum rules [8] relate these GPDs

to the usual deuteron form factors:∫ 1

−1

dxHi(x, ξ, t) = Gi(t) (i = 1, 2, 3),

∫ 1

−1

dxH̃i(x, ξ, t) = G̃i(t) (i = 1, 2), (5)

or lead to a null average:∫ 1

−1

dxH4(x, ξ, t) =
∫ 1

−1

dxH̃3(x, ξ, t) = 0,

∫ 1

−1

dxH5(x, ξ, t) =
∫ 1

−1

dxH̃4(x, ξ, t) = 0. (6)

Taking the forward limit of the matrix elements defin-
ing GPDs leads to the relations [8] between GPDs and par-
ton densities in the deuteron (with obvious notations) as

H1(x, 0, 0) =
q1(x) + q−1(x) + q0(x)

3
,

H5(x, 0, 0) = q0(x)− q1(x) + q−1(x)
2

,

H̃1(x, 0, 0) = q1
↑(x)− q−1

↑ (x) (7)

for x > 0. The corresponding relations for x < 0 involve
the antiquark distributions at −x, with an overall minus
sign in the expressions for H1 and H5.
In all this paper we will restrict to the quark contri-

bution. Gluon contributions are expected to be small at
medium energies but should be included in a more com-
plete description of the process. Therefore, we will limit
ourselves to values of xBj not smaller than 0.1.

3 Helicity amplitudes in the impulse
approximation

The impulse approximation (fig. 1) is the zeroth order to
explain the photon-nucleus interaction, but it is the first
model one has to analyze since the bulk of the physics is
already contained in it.
In the previous section we mentioned that the relevant

quantities are the deuteron GPDs. For the sake of simplic-
ity, we will model the matrix elements Vλ′λ (3) and Aλ′λ
(4) and recover the GPDs just by using the relations given
in the appendix. Furthermore, since we are going to limit
ourselves to the quark content of the deuteron and this is
an isoscalar target, we will set

V u
λ′λ = V d

λ′λ ≡ V q
λ′λ (8)

and a similar relation holds for Aλ′λ.
Let us denote by Pµ (P ′µ) the momentum of the in-

coming (outgoing) deuteron and λ (λ′) its polarization
state, that sometimes we will denote by 0,+ or −. To
perform this analysis, we will choose a symmetric frame
where the average momentum P̄µ = (Pµ + P ′µ)/2 has
no transverse components. We will also need a light-like
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Fig. 1. Estimating the helicity amplitudes for the γ∗D → γD
in the impulse approximation. The final result is a convolution
model between the deuteron wave function and the GPDs for
the nucleon (upper blob).

vector nµ to define, together with P̄µ, the light cone and
satisfying P̄ · n = 1. To be more concrete, it is convenient
to choose a frame where P̄µ moves fast to the right.
The momentum transfer ∆µ = P ′µ−Pµ has a longitu-

dinal and a transverse component. The skewness controls
the fraction of momentum transferred in the “+” direc-
tion:

ξ = − ∆ · n
(P + P ′) · n = − ∆+

2P̄+
. (9)

With these considerations, the four-vectors corre-
sponding to each deuteron are1

Pµ =
(
(1 + ξ)P̄+,

M2 +∆2
⊥/2

2P̄+(1 + ξ)
,−∆⊥

2

)
, (10)

P ′µ =
(
(1− ξ)P̄+,

M2 +∆2
⊥/2

2P̄+(1− ξ)
,
∆⊥
2

)
. (11)

The invariant momentum transfer is written as

t = ∆2 = −4ξ
2M2 +∆2

⊥
1− ξ2

. (12)

The positivity of ∆2
⊥ implies that there is a minimal

momentum transfer t0 for a fixed ξ:

t0 = −4ξ
2M2

1− ξ2
, (13)

and at the same time, for a given t, there is un upper
bound on the allowed values for ξ:

ξ2 ≤ −t

4M2 − t
. (14)

The GPDs depend in addition on one more variable
x which is defined as the fraction of average momentum
carried by the partons in the “+” direction:

x =
k̄ · n
P̄ · n (15)

with k̄µ = (kµ + k′µ)/2. Therefore, the longitudinal mo-
mentum of the initial parton is (x + ξ)P̄+, whereas the

1 We use the following notation for the four-vectors:
(v+, v−,v⊥), with v± = 1√

2
(v0 ± v3).

final one has (x− ξ)P̄+, delivering a longitudinal transfer
∆+ = −2ξP̄+ to the deuteron.
Now let us turn our attention to the kinematics at the

nucleon level and let us define the fraction of longitudinal
momentum carried by each nucleon in the deuteron as

αi =
p+
i

P+
, α′

i =
p′+i
P ′+ . (16)

Therefore, we have that the relevant kinematical quan-
tities for the nucleons that make up the initial deuteron
are (α ≡ α1)

p+
1 = α(1 + ξ)P̄+,

p+
2 = (1− α)(1 + ξ)P̄+, (17)

p1⊥ + p2⊥ = −∆⊥
2

.

and for the final deuteron we have (α′ ≡ α′
1)

p′+1 = α′(1− ξ)P̄+,

p′+2 = (1− α′)(1− ξ)P̄+, (18)

p′
1⊥ + p′

2⊥ =
∆⊥
2

.

We can now use the decomposition of the deuteron
states in terms of nucleon states and the wave function
defined in appendix A.1, eq. (A.2), to get

V q
λ′λ =

2
(16π3)

∫
dα dα′ dp1⊥dp

′
1⊥

√
1 + ξ

1− ξ

1√
αα′

· δ2(p′
1⊥ − p1⊥ − ∆⊥)δ

(
α′ − α(1 + ξ)− 2ξ

1− ξ

)
· Θ(α(1 + ξ)− |x| − ξ) Θ(α(1 + ξ)− 2ξ)
·

∑
λ′

1,λ1,λ2

χ∗
λ′(α′,k′

⊥, λ′
1, λ2)χλ(α,k⊥, λ1, λ2)

· 1
2

∫
dκ
2π

eiκx
〈
p′1, λ

′
1|ψ̄q

(
−κ

2
n
)
γ ·nψq

(κ
2
n
)
|p1, λ1

〉
.

(19)

In the equation above, the variables of the spectator
nucleon have been eliminated just by using the normaliza-
tion properties of the one-particle states. The arguments
of the deuteron wave function (see appendix A.1 for de-
tails), k′

⊥ and k⊥, are the transverse momenta of the ac-
tive nucleon in a frame where P′

⊥ = 0 and P⊥ = 0, respec-
tively. Their relationship with the transverse momenta in
the symmetric frame is

k⊥ ≡ k1⊥ = p1⊥ + α
∆⊥
2

, (20)

k′
⊥ ≡ k′

1⊥ = p′
1⊥ − α′∆⊥

2
. (21)

The Heaviside functions in eq. (19) ensure the positiv-
ity of the “plus” momentum carried by the nucleons and
put a lower bound on the integration over α. The first one
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stands for processes where |x| > ξ, whereas the second
one acts when we are on the ERBL region where |x| < ξ.
Therefore, we end up with matrix elements of a non-

local quark operator between one-nucleon states, which is
parameterized in terms of nucleon GPDs. To take advan-
tage of usual parameterizations found in the literature, it
is convenient to keep on working on a symmetric frame.
However, since nucleons carry some transverse momentum
within the deuteron, the symmetric frame for the deuteron
is not the symmetric frame for the active nucleon.
By performing a transverse boost, it is possible to eval-

uate the matrix element in (19) in a symmetric frame,
which has the property

p̃′
1⊥ + p̃1⊥ = 0, (22)

where we have marked with a ˜ the quantities in this
boosted frame. Since it is a transverse boost, it does not
change the “+” components of the vectors. The light-like
vector nµ is not changed either, since it is a light-like vec-
tor with no transverse components, i.e. ñµ = nµ.
In that frame, the parameterization of the nucleon

GPDs is made with variables that refer to the initial and
final nucleon, i.e., we define

xN =
¯̃
k · ñ
¯̃p1 · ñ

=
x

α(1 + ξ)− ξ
, (23)

ξN = − ∆̃ · ñ
2¯̃p1 · ñ

=
ξ

α(1 + ξ)− ξ
. (24)

Due to the lower bound on the values of α, we have
ξN ≥ ξ. Moreover, it can be checked that xξ =

xN

ξN
, which

is consistent with the fact that we are probing qq̄ distribu-
tion amplitudes in the deuteron only through the nucleon.
In other words, when we enter the ERBL region in the
deuteron (i.e. when |x| = ξ), we do so at the nucleon level
(i.e. when |xN | = ξN ).
The transverse momentum of the nucleon that inter-

acts with the photon is, after the boost,

p̃1⊥ = −∆̃⊥
2

, (25)

p̃′
1⊥ =

∆̃⊥
2

, (26)

∆̃⊥ = (1 + ξN )∆⊥ + 2ξNp1⊥ . (27)

Now we can use the parameterization of the nucleon
matrix element given in the appendix, and after some al-
gebra and changes in the integration variables we reach
the final result for Vλ′λ:

V q
λ′λ =

2
(16π3)

∫
αmin

dαdα′dk⊥dk′
⊥

√
1 + ξ

1− ξ

1√
αα′

· δ2

(
k′
⊥−k⊥−

(
1−α

1−ξ

)
∆⊥

)
δ

(
α′−α(1+ξ)−2ξ

1−ξ

)

·
∑

λ′
1,λ1,λ2

χ∗
λ′(α′,k′

⊥, λ′
1, λ2)χλ(α,k⊥, λ1, λ2)

·
[(√

1− ξ2
NHIS(xN , ξN , t)

− ξ2
N√

1− ξ2
N

EIS(xN , ξN , t)
)
δλ′

1λ1

+
√
t0 − t

2m
ηλ1E

IS(xN , ξN , t)δλ′
1,−λ1

]
(28)

and a similar expression for Aqλ′λ:

Aqλ′λ =
2

(16π3)

∫
αmin

dαdα′dk⊥dk′
⊥

√
1 + ξ

1− ξ

1√
αα′

·δ2

(
k′
⊥−k⊥−

(
1−α

1−ξ

)
∆⊥

)
δ

(
α′−α(1+ξ)−2ξ

1−ξ

)

·
∑

λ′
1,λ1,λ2

χ∗
λ′(α′,k′

⊥, λ′
1, λ2)χλ(α,k⊥, λ1, λ2)

·
[
2λ1

(√
1− ξ2

N H̃IS(xN , ξN , t)

− ξ2
N√

1− ξ2
N

ẼIS(xN , ξN , t)
)
δλ′

1λ1

+ 2λ1ξN

√
t0 − t

2m
ηλ1Ẽ

IS(xN , ξN , t)δλ′
1,−λ1

]
. (29)

The factor 2 in front of the formulae above stands
for the number of nucleons, so that the isoscalar nucleon
GPDs (HIS, EIS, . . . ) is the isoscalar combination within
one single nucleon:

HIS(xN , ξN , t) =
1
2

[
Hu(xN , ξN , t) +Hd(xN , ξN , t)

]
.

(30)
The phase that goes with the nucleon helicity flip

GPDs is given by

ηλ =
2λ∆̃x − i∆̃y

|∆̃⊥|
. (31)

For the sake of clarity, we have omitted the Heaviside
function in the integrals above but recall that there is a
lower bound on the value of α, which is

αmin = max
{
2ξ
1 + ξ

,
|x|+ ξ

1 + ξ

}
. (32)

4 Deuterons GPDs

Once we have obtained the helicity amplitudes, it is
straightforward to get from them the deuteron GPDs
(fig. 2), just from the definitions given in eqs. (3), (4).
To do so in a simple way, one can use the light-cone po-
larization vectors given in [8]. The analytical expressions
are summarized in the appendix.
At this point one may argue that definitions of

deuteron GPDs were not actually necessary to reach the
results of the preceding section and that one can derive
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Fig. 2. Deuteron generalized parton distributions in the im-
pulse (a and b) and beyond (c) the impulse approximation.

the cross-sections and observables, directly from eqs. (28)
and (29). But it should be emphasized that the genuine
objects that parameterize the hadronic structure are the
GPDs, the rest being just kinematics. The GPDs have
well-defined properties in some limits and their analysis
could help us in testing the soundness of a model, as a
complementary check to the comparison with experimen-
tal data.

4.1 Deuteron wave function

We need a specific model for the spatial deuteron wave
function. As can be seen in the appendix, in the lower
Fock-space approximation one can link the light cone wave
function to the usual instant-form wave function through
an identification of variables. We have chosen a parame-
terization of the spatial wave function given by the Paris
potential [12] which has an S-wave supplemented with a
D-wave component with a probability of 5.8%. We do
not expect a strong dependence on the chosen parame-
terization for the deuteron wave function. Most of them
are identical in the low-momentum region since they are
strongly constrained by the well-known form factors. Dif-
ferences between parameterizations are significant only in
the large-momentum region. Since we are going to limit
ourselves to the low-momentum-transfer region, we will
not be especially sensitive to the tail of the wave function.
Nonetheless, before going through the details of the

results, let us discuss some features of the deuteron GPDs
that may be expected from quite general grounds. The
skewness parameter ξ determines the momentum transfer
in the longitudinal direction:

∆+ ≡ (P ′+ − P+) = −2ξP̄+ , (33)

and in the generalized Bjorken limit this is entirely fixed
by the kinematics of the virtual photon (ξ ≈ xBj/2). In
the impulse approximation, this momentum transfer has
to be provided by the active nucleon, and after that, the
final state of this active nucleon still has to fit into the final
deuteron. Since the deuteron is a loosely bound system,
one cannot have a very asymmetrical sharing of longitu-
dinal momentum between the nucleons and one may thus
guess that the formation of the coherent final state will
be strongly suppressed in the impulse approximation for
large skewness.
To be more quantitative, let us define the longitudinal

momentum distribution of the nucleon in the deuteron as

nλ(α) =
∑
λ1,λ2

∫
dk⊥dβ
(16π)3

|χλ(β,k⊥, λ1, λ2)|2δ(α− β),

(34)

b)

a)

Fig. 3. (a) Longitudinal momentum distribution of the nu-
cleon within the deuteron. (b) Gap between the fractions of
longitudinal momentum carried by the active nucleon before
and after the interaction as a function of ξ(xBj) and α.

which is normalized according to∫
dα nλ(α) = 1. (35)

In fig. 3a we show n0(α) evaluated with the wave func-
tion from the Paris potential [12]. This distribution is
strongly peaked at α = 0.5 and its width is of the order
of the ratio of the binding energy divided by the nucleon
mass.
In the impulse approximation, the active nucleon af-

ter the interaction with the photon carries a fraction of
longitudinal momentum which is given by

α′ = α− xBj

1− xBj
(1− α) . (36)
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In fig. 3b we plot the difference α−α′ as a function of
α and for several values of the skewness. We see that for
xBj > 0.1 this difference is larger than the width of the
momentum distribution, and therefore, we will inevitably
have a too fast or too slow nucleon (in the longitudinal
direction). In this case, the central region of momentum,
where a maximal contribution is expected, is missed and
then the cross-sections will decrease very fast with xBj.
In other words, there is an increasing difficulty in form-
ing a coherent final state as the longitudinal momentum
transfer, i.e. xBj, increases. In that case, other coherent
mechanisms, which could involve higher Fock-space com-
ponents, will presumably become dominant. Not much is
known about these states, but it should be emphasized
that the suppression of the diagram of fig. 1 occurs at xBj

as low as 0.2, so that there is room to check the importance
of the contribution of these “exotic” states.
The choice of the nucleon GPDs deserves a more de-

tailed discussion.

4.2 Modelling nucleon GPDs

Let us first consider the helicity-conserving nucleon GPDs.
Following [13], we have taken a factorized ansatz for the
t-dependence of the nucleon GPDs:

Hu(xN , ξN , t) = hu(xN , ξN )
1
2
Fu1 (t), (37)

Hd(xN , ξN , t) = hd(xN , ξN )F d1 (t), (38)

H̃q(xN , ξN , t) = h̃q(xN , ξN )F̃ q(t), (39)

and neglected the strange-quark contributions Hs. The
flavour decomposition of the proton and neutron Dirac
form factor, for which we have taken the usual dipole pa-
rameterizations [14], gives

Fu1 (t) = 2F
p
1 + Fn1 , (40)

F d1 (t) = 2F
n
1 + F p1 . (41)

For the axial form factor we have taken F̃ q(t) = (1 −
t/M2

A)
−2 with MA = 1.06 GeV [15]. For hq and h̃q we

follow the ansatz based on double distributions:

hq(xN , ξN ) =
∫ 1

0

dx′
∫ 1−x′

−1+x′
dy′ [δ(xN−x′−ξNy′) q(x′)

− δ(xN + x′ − ξNy′) q̄(x′) ]π(x′, y′), (42)

h̃q(xN , ξN ) =
∫ 1

0

dx′
∫ 1−x′

−1+x′
dy′ δ(xN − x′ − ξNy′)

· ∆qV (x′)π(x′, y′), (43)

π(x′, y′) =
3
4
(1− x′)2 − y′2

(1− x′)3
, (44)

where we have only considered the polarization of the va-
lence quarks. To avoid numerical problems with the inte-
grals in the low-x region, we have followed the procedure
explained in [8]. Throughout this work we have taken the

parameterization MRST 2001 NLO [16] for the unpolar-
ized parton distributions and the parameterization LSS01
[17] for the polarized ones.
Concerning the helicity flip nucleon GPDs, Eq and

Ẽq, we can safely neglect the latter since we deal with
an isoscalar target. The former is suppressed in the Vλ′λ
amplitudes, eq. (28), by kinematical factors. However, one
might think that there could be physical situations which
could be sensitive to this GPD: in the amplitudes where
λ′ �= λ the transition with HIS is done at the cost of using
the D-wave of the deuteron, i.e., by making use of angular
momentum. The term with EIS could flip the helicity at
the nucleon level and, therefore, the (rather small)D-wave
admixture in the deuteron is not necessary.
Unfortunately, most of the observables are dominated

by amplitudes with λ′ = λ. We have checked that effects
due to EIS are negligible and we have only shown how tiny
they are for the sum rules, just for illustrative purposes.
Furthermore, when modelling Eq following the steps ex-
plained in [13], one realizes that the isoscalar combination
is suppressed. Recall that Eq is normalized to the Pauli
form factor, that in the forward limit gives just the anoma-
lous magnetic moment, very small for the isoscalar case.
Let us stress that the available models of GPDs are

fraught with uncertainties, in particular in the ERBL re-
gion. There, GPDs describe the emission of a qq̄ pair from
the target, and an ansatz only using the information from
usual parton densities should be used with care. Notice
also that, while for x > ξ GPDs are bounded from above
[18], no analogous constraints are known in the ERBL
region. A particular type of contribution in the ERBL re-
gion is the Polyakov-Weiss D-term [19], which we will not
include in our analysis.

4.3 Results

With the ingredients mentioned before we plot in figs. 4
and 5 the corresponding generalized quark distributions,
which are flavorblind for the deuteron case. The support
of these functions is −1 < x < 1, but we have plotted
only the central region. In addition, due to the assump-
tion made when modelling H̃ for the nucleon (the non-
contribution of the polarized sea) we have that H̃i(x ≤
ξ, ξ, t) vanishes.
The rapid falloff of the GPDs with x reflects the fact

that the impulse approximation, i.e., the single-nucleon
contribution, cannot account for very large longitudinal
momentum.
Notice also the huge differences in the scales of the

various GPDs: for the vector sector,H3 dominates over the
others, whereas H4 or H5 are very small. The respective
sizes may be related to the values of the different deuteron
form factors for the GPDs that have a sum-rule connection
to them (see eq. (5)).
The form factors that we have used in the current

(G1, G2, G3) are related with the usual charge monopole,
GC, magnetic dipole, GM and charge quadrupole, GQ in
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Fig. 4. Generalized quark distributions for the deuteron at
Q2 = 2 GeV2, ξ = 0.1 and t = −0.25 GeV2.

Fig. 5. Generalized polarized quark distributions for the
deuteron at Q2 = 2 GeV2, ξ = 0.1 and t = −0.25 GeV2.
H̃1 (upper left), H̃2 (upper right), H̃3 (lower left), H̃4 (lower
right).

the following way:

G1(t) = GC(t)− 2
3
ηGQ(t) ,

G2(t) = GM(t) , (45)

(1 + η)G3(t) = GM(t)−GC(t) +
(
1 +

2
3
η

)
GQ(t)

with η = −t
4M2 . With the flavour decomposition of the form

factors for the deuteron, we have Gui = Gdi ≡ Gqi = 3Gi.
The dominant form factor is Gq3 due mainly to the size of
GQ(t) (see [20]), and if we consider the form factors as a
normalization condition for the GPDs, it is natural that
H3 dominates over the other GPDs.
Notice, however, that the fact that a GPD is large

does not mean necessarily that it plays a major role in the
observables: it has to be multiplied by the corresponding
kinematical coefficients.
It is worthwhile mentioning that we have plotted the

GPDs at a particular value of −t, i.e. we cannot set t = 0
to study the ξ and x behaviour. The reason is that, even
if we assume a factorized form for the t-dependence in
the nucleon, in the deuteron we cannot isolate this t-
dependence. In fact, there are two sources of t-dependence
in Hi and H̃i: first, the explicit t-dependence in the nu-
cleon GPDs and, secondly, the most important source,
the transverse momentum in the deuteron wave function.
Then, we cannot circumvent the kinematical relationship
between ξ and t, eq. (12), and for a non-vanishing ξ we
have inevitably a non-vanishing t.

4.4 Sum rules: tests and discussions

In the impulse approximation we have retained only the
lowest Fock-space state of the deuteron (figs. 2a and b).
As we can see, the qq̄ components which are tested in
the region |x| < ξ, are considered only within the nucleon
itself (fig. 2b).
We have also neglected the NN̄ components in the

deuteron wave function, which could give rise to diagrams
like the one in fig. 2c. When one evaluates the elastic
deuteron form factor [21,22], this is an exact approxi-
mation since one can always choose a frame where the
momentum transfer is purely transverse and in that case,
∆+ = 0 and no pairs can be created from or annihilated
into a photon.
In the DVCS and DEMP cases, there is a non-

vanishing momentum transfer in the longitudinal direc-
tion, controlled by the skewness parameter ξ. Therefore,
there are necessarily diagrams where the final photon goes
out from the annhilation of, for example, a NN̄ pair or a
qq̄ (see fig. 2c). One has to include these higher Fock-space
components to recover Lorentz invariance.
Lorentz invariance is the physical reason why the sum

rules (5), obtained by integrating the GPDs over x, be-
come ξ-independent. When we perform that integration
we have matrix elements of local operators (form factors)
that cannot depend on the artifacts of the kinematics, i.e.
of the separation between transverse and longitudinal mo-
mentum transfer (see [23] for a more detailed discussion
on this point).
We can make use of this relationship between the ξ-

independence of the sum rules and the contribution of
higher Fock-space states in the deuteron to check how ac-
curate the impulse approximation is. We have plotted in
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Fig. 6. Sum rules for the vector GPDs at Q2 = 2 GeV2 and
t = −0.5 GeV2. Solid lines are the expected theoretical re-
sult and points are the results obtained with our model. Filled
points: the nucleon GPD EIS is not included; empty points:
EIS included.

fig. 6 the quantities

Ii(ξ) =
∫ 1

−1

dxHq
i (x, ξ, t). (46)

For a fixed t, the functions Ii(ξ) would be constant
if the impulse approximation were exact: straight lines in
the figure show the “theoretical” values of the sum rule ac-
cording to the experimental parameterization of the form
factors. Any residual ξ-dependence of Ii(ξ) is a measure
of the importance of the higher Fock-space states that
we have not included in our description. Looking at this
figure and to the corresponding one for the axial case, we
can see that this dependence is fairly mild, which indicates
that, in the kinematical regime that we are interested in,
the deuteron is essentially a two-nucleon state2. As ξ in-
creases, the impulse approximation would become a too
rough approximation with respect to Lorentz invariance.
One should distinguish between the variation in ξ of

the quantities Ii(ξ) and the particular values they take,
which are sensitive also to the details of the employed

2 We checked that the inclusion of the nucleon GPD EIS does
not introduce any improvement at all: its contribution vanishes
exactly at ξ = 0, and is always small at other values of ξ.

Fig. 7. Sum rules for the vector GPDs at Q2 = 2 GeV2 and
fixed ξ = 0 as a function of t. Solid lines represent the ex-
pected theoretical values whereas points are the results of our
evaluation.

model. In fig. 6 we see that the points obtained with our
calculations are quite close to the experimental parameter-
ization. Obviously, the models works better at smaller ξ,
for the reasons exposed above. In fact, in fig. 7, we show
the t-dependence of the sum rules at ξ = 0, where it is
clearly seen that results agrees quite well with the experi-
mental parameterization, when available, or with the val-
ues imposed by time reversal or Lorentz invariance. This
comes as no surprise, since it is well known that the light-
cone deuteron wave function is able to give the deuteron
form factors at the momentum transfer we are working
(see [24] for a recent review). In the context of our dis-
cussion, at ξ = 0 the pair creation or annihilation with
the photon vanishes in the light-cone formalism. In fig. 8,
we plot the same quantities (eq. (46)) for the axial-vector
GPDs.
One final remark concerns also the subtleties of the

light-cone formalism: nucleons are on-shell, i.e., they ver-
ify, with the notation employed in the previous section,
that

p−i =
m2 + p2

i⊥

2p+
i

. (47)

But, they are off light-cone energy shell, and, as a con-
sequence, if P+ = p+

1 + p+
2 and P⊥ = p1⊥ + p2⊥ (as it is

the case), one has that P− �= p−1 + p−2 . Therefore, one has
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Fig. 8. Sum rules for the axial-vector GPDs at Q2 = 2 GeV2

and t = −0.5 GeV2.

that the momentum transfer t defined from the deuteron
variables does not coincide with the one defined from the
variables of the active nucleon. Moreover, the upper limit
over ξ2

N is not −t
4m2−t . If, nevertheless, one enforces ξ

2
N to

have this upper limit, this leads only to a tiny shift in the
value of αmin in the integrals. From the practical point of
view, these differences are too tiny to be seen in the nu-
merical calculation, unless one goes to very large values of
−t. This just reflects the fact that the off-shellness effects
in the light-cone energy are of the order of the binding
energy over the longitudinal momentum [25]:

P− − (p−1 + p−2 ) ∝
V

P+
(48)

and in our case this is of the order of the binding energy
of the deuteron over the center-of-mass energy, i.e., very
small.

5 DVCS amplitudes and cross-sections

There are two processes that contribute to the deeply vir-
tual Compton scattering amplitude of eq. (1) under con-
sideration. The first one is the Bethe-Heitler process where
the outgoing photon is produced from the lepton line. Its
amplitude (for either electrons or positrons) is given by

TBH = −e3

t
ε∗µ(q

′, λ′)jν(0)Lµν , (49)

where e is the proton charge. The deuteron current is given
by

jµ=− G1(t)(ε′∗ ·ε)2P̄µ+G2(t)
[
(ε′∗ · 2P̄ )εµ+(ε · 2P̄ )ε′∗µ

]
− G3(t)(ε′∗ · 2P̄ )(ε · 2P̄ ) P̄µ

M2
, (50)

where the three form factors have been measured in the
low- and medium-momentum transfer ranges [20]. The
leptonic tensor Lµν is given by

Lµν= ū(k ′, h′)
[
γµ

1
(� k′+ � q′)γ

ν + γν
1

(� k− � q′)γ
µ

]
u(k, h).

(51)
The Bethe-Heitler process is thus completely known in
terms of already measured form factors.
The second process where the photon is emitted from

the hadronic part is more interesting in terms of the study
of the hadronic structure. It is called virtual Compton
scattering since it can be decomposed in a γ∗A → γB
process. Its amplitude TVCS is written as

TVCS = ± e3

Q2

∑
λ

Ω(h, λ)MH′λ′,Hλ, (52)

where the upper sign is for electrons and the lower one for
positrons and the function Ω comes from the decompo-
sition of the leptonic current in terms of the polarization
vector of the virtual photon,

ū(k ′, h)γνu(k, h) =
∑
λ

Q√
1− ε

Ω̃(h, λ)εν(q, λ), (53)

Ω̃(h, λ) =
[
δλ0

√
2ε− λ√

2
(
√
1 + ε+ 2hλ

√
1− ε)e−iλφ

]
.

Sometimes we will also use

Ω(h, λ) ≡ Q√
1− ε

Ω̃(h, λ). (54)

The photon-deuteron helicity amplitudes are defined
as

MH′λ′,Hλ = ε∗µ(q
′, λ′)εν(q , λ)Hµν (55)

and

Hµν = (gµν − p̃µñν − ñµp̃ν)

·
∫ 1

−1

dx
(

1
x− ξ + iη

+
1

x+ ξ − iη

)∑
q

e2
qV

q
λ′λ

+iεµναβ p̃αñβ (56)

·
∫ 1

−1

dx
(

1
x− ξ + iη

− 1
x+ ξ − iη

)∑
q

e2
qA

q
λ′λ

with the convention ε0123 = +1.
For completeness, let us first write down the formula

for the cross-section of the Bethe-Heitler process on the
deuteron

∑
|TBH|2 = (4παem)3

t2
[KAA(t) +KBB(t)], (57)
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where A, B are the elastic structure functions of the
deuteron, which are well known in the low-momentum re-
gion, and the kinematical coefficients are:

KB = − 2M2

(k · q′)(k′ · q′) [(2(k · q′)+t)2+(2(k ·q′)+Q2)2],

KA = −KB + 4t
(k′ · q′ ) (M

2 + s+Q2 − 2skp)

+
t

2(k · q′)(k′ · q′)
{
(2M2+Q2−2skp)2−(Q2−2t)2

+4(Q2 + s− skp)2 + 4t(t+ s− skp)
}

(58)

with skp = (k + p)2.
The VCS amplitude gives a contribution to the cross-

section which may be decomposed in terms of its az-
imuthal dependence as∑

|TVCS|2 = 1
3
(4παem)3

Q2(1− ε)

∑
H,H′

(
2|MH′1,H1|2

+2|MH′1,H−1|2 + 4ε|MH′1,H0|2
+4

√
ε(1 + ε) cosφ Re[MH′1,H0M

∗
H′1,H−1

−MH′1,H0M
∗
H′1,H1]− 4ε cos(2φ)Re[MH′1,H−1M

∗
H′1,H1]

)
.

(59)

The interference between the two processes leads to
a contribution to the DVCS cross-section which may be
written as∑

(TVCST
∗
BH + T ∗

VCSTBH) = ∓2
3
(4παem)3

Qt
√
1− ε

·
∑

H,H′,λ,h

2h Re[ε∗µ(q
′, λ′ = +1)jνLµνΩ̃(h, λ)]

· Re[MH′1,Hλ], (60)

where the upper sign stands for electrons and the lower
one for positrons.
The study of the initial electron helicity dependence

may be expressed through the following weighted contri-
butions to the cross-section:∑

2h| TBH|2 = 0, (61)

∑
2h|TVCS|2 = 4

3
(4παem)3

Q2

√
ε

1− ε

·
∑
H,H′

sinφ Im[MH′1,H0M
∗
H′1,H1−MH′1,H0M

∗
H′1,H−1],

(62)

∑
2h (TVCST

∗
BH + T ∗

VCSTBH) = ∓2
3
(4παem)3

Qt
√
1− ε

·
∑

H,H′,λ,h

2h Im[ε∗µ(q
′, λ′ = +1)jνLµνΩ̃(h, λ)]

· Im[MH′1,Hλ], (63)

where the upper sign stands for electrons and the lower
one for positrons.

Fig. 9. Unpolarized differential cross-section for DVCS for typ-
ical kinematics at JLab (top panel) and HERMES (bottom
panel). Dashed-dotted line: BH only; dashed line: DVCS only;
full line: BH + DVCS + interference.

6 Numerical results for DVCS

Our model enables us now to estimate the cross-section
of coherent deeply virtual Compton scattering on the
deuteron. We are particularly interested in the forthcom-
ing experiments at JLab and Hermes at DESY, and we
thus shall present results for the kinematics of these ex-
perimental set-ups.
We present in fig. 9 the unpolarized cross-section for

low- (left panel) and medium- (right panel) energy reac-
tions. The Bethe-Heitler and VCS contributions are shown
as well as their interference. The relative importance of
these contributions depends much on the production an-
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Fig. 10. Comparison of the DVCS cross-sections on a proton
(dashed line) and deuteron (solid line) target for xBj = 0.1

in the deuteron case (respectively, 0.2 for the proton), Q2 =
4 GeV2 and Ee+ = 27 GeV.

Fig. 11. Azimuthal dependence of the beam spin asymmetry
as defined in the text. Left: xBj = 0.2, Q2 = 2 GeV2 and Ee =

6 GeV. Right: xBj = 0.1, Q2 = 4 GeV2 and Ee+ = 27 GeV. In

both cases t is fixed to −0.3 GeV2.

gle of the final photon, as can be read from the figure. To
discuss the feasibility of the experiment, a comparison to
the proton target case is welcome. This is shown in fig. 10
for medium-energy reactions.
Coherent deep VCS is certainly not a negligible effect

at small values of t and we can expect that this process
should soon become observable so that some knowledge
of the deuteron GPDs will become accessible. More than
testing the validity of the impulse approximation, the goal
of such an experiment is to observe some definite devia-
tion from the impulse approximation predictions, thereby
indicating some non-trivial short-distance content of the
deuteron. To scrutinize such effects, it is interesting to

Fig. 12. Coefficients of the Fourier decomposition of the beam
spin asymmetry: ALU = a0 + s1 sinφ + s2 sin 2φ as a function
of t. Values of xBj, Q2 and El as in fig. 11.

turn to some more specific observables, such as spin and
charge asymmetries.
The beam spin asymmetry is defined as

ALU (φ) =
dσ↑(φ)− dσ↓(φ)
dσ↑(φ) + dσ↓(φ)

, (64)

where φ is the angle between the lepton and hadron scat-
tering planes. The numerator is proportional to the in-
terference between the Bethe-Heitler and the VCS ampli-
tudes.
Our predictions calculated with our modelized

deuteron GPDs are shown in fig. 11 for JLab and Her-
mes energies. The sign of the asymmetry is reversed for a
positron beam. Such a sizable asymmetry should be quite
easily measured. It will constitute a crucial test of the
validity of any model.
It has been shown [2] that, asymptotically, the beam

spin asymmetry exhibits a sin(φ) azimuthal dependence.
We have performed a Fourier decomposition of the asym-
metry ALU obtained for the deuteron and, indeed, we have
checked the dominance of the sin(φ) component, even at
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Fig. 13. Azimuthal dependence of the beam charge asymmetry
AC for the kinematics of HERMES shown in previous figures.

relatively low values of Q2. But we also have a sizeable
sin(2φ) component (see fig. 12), which is less suppressed
than in the nucleon case. This is likely to come from the
following fact: the Bethe-Heitler propagators exibit when
t �= t0 an azimuthal dependence in cos(φ) which goes with
terms of the order of t/Q2, but also with terms of the order
m2/Q2. In the nucleon case this sin(2φ) = 2 sin(φ) cos(φ)
component was already seen [5] under some kinematical
conditions, and the larger deuteron mass enhances it. In
that respect, we expect that the scaling regime signed by
the dominance of the sin(φ) component [2] is likely to be
reached later in the deuteron case than in the proton case.
The beam charge asymmetry

AC(φ) =
dσe

+ − dσe+
dσe+ + dσe+

(65)

is also proportional to the interference of the Bethe-Heitler
and the VCS processes. Its characteristic azimuthal de-
pendence is shown in fig. 13. Its size is large enough for a
feasible experimental evaluation.

7 Deep exclusive meson electroproduction

Deep exclusive meson electroproduction [26] may be dis-
cussed along the same lines as the DVCS reaction. The
same QCD factorization property exists which allows to
separate a short-distance subprocess from long-distance
matrix elements, provided the initial virtual photon is lon-
gitudinally polarized. The same GPDs appear in principle
in the deuteron sector, but selection rules select some of
the GPDs. The meson production is described within the
well-established colinear approximation [27] through the
introduction of a distribution amplitude Φ(z,Q2) which
is generally parameterized through its asymptotic (in the
sense of its Q2 evolution) expression,

Φρ(z,Q2) = 6fρz(1− z) (66)

Fig. 14. ρ0 (top) and π0 (bottom) virtual photoproduction
cross-sections at xBj = 0.1, Q2 = 4 GeV2 (solid lines) and

xBj = 0.2, Q2 = 3 GeV2 (dashed lines).

for the ρ-meson, and

Φπ(z,Q2) = 6
√
2fπz(1− z) (67)

for the π-meson, with fρ = 216 MeV and fπ = 92 MeV.
The resulting amplitudes read (λ, λ′ denoting deuteron
polarizations as above):

Mρ
λ′,λ = −ie

16παS

9
1
Q

∫ 1

0

dz
Φρ(z)

z

·
∫ 1

0

dx
(

1
x− ξ + iε

+
1

x+ ξ − iε

)
1√
2
V q
λ′,λ(68)

for the vector meson case, and

Mπ
λ′,λ = −ie

16παS

9
1
Q

∫ 1

0

dz
Φπ(z)

z

·
∫ 1

0

dx
(

1
x− ξ + iε

+
1

x+ ξ − iε

)
1√
2
Aqλ′,λ (69)
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for the pseudoscalar meson case, where the isosinglet na-
ture of the deuteron has been used to simplify the results.
The factor 1√

2
in front of the matrix elements Vλ′λ and

Aλ′λ come from the flavour decomposition of the ρ0 and
the π0, i.e. 1√

2
(|uū〉 − |dd̄〉).

An interesting feature of meson electroproduction is
the absence of a competing subrocess such as the Bethe-
Heitler process in DVCS. Rates are also higher than in the
DVCS case by a factor of αS/αem. The effective strong-
coupling constant has been taken as αS = 0.56 as advo-
cated in [26]. Vector meson (mostly ρ0) production selects
the vector GPDs Hi, while pseudoscalar meson (mostly
π0) production selects the axial ones H̃i. Meson pair pro-
duction, described in the formalism of the generalized dis-
tribution amplitudes [28], may also be calculated in the
same way.
We show in fig. 14 the prediction of our model for ρ0

and π0 electroproduction for Q2 = 4 GeV2, xBj = 0.1
and for Q2 = 3 GeV2, xBj = 0.2. As in the proton case,
the vector meson production is enhanced with respect to
the pseudoscalar meson production. The pseudoscalar pro-
duction is quite small since the isosinglet nature of the
deuteron forbids any enhanced Ẽ contribution due to π0

exchange in the t-channel.

8 Conclusion

We have demonstrated that deeply virtual Compton scat-
tering and deep exclusive meson electroproduction on the
deuteron is a feasible and promising field of study of
the deuteron structure. More theoretical work is obvi-
ously needed before one can draw definite conclusions
from forthcoming data. In particular, some of the so-called
higher twist terms are needed [29] and should be esti-
mated, at least those coming from target mass effects [30]
that one may expect to be non-negligible. A first esti-
mate of this effect has been given in the second reference
of [9]. The inverse process, photoproduction of a lepton
pair, sometimes called timelike Compton scattering, is also
feasible, and should give complementary information as
was shown in ref. [31] for the nucleon case. Double deeply
virtual Compton scattering [32] may also be studied along
the same lines. We expect that a deepened understanding
of the short-distance structure of the deuteron will emerge
from these studies.
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and F. Sabatie. Special thanks to P.A.M. Guichon and M.
Vanderhaeghen for their help with technical calculations. This
work was supported by the EC-IHP Network ESOP, Contract
HPRN-CT-2000-00130.

Appendix A.

Appendix A.1. Light-cone deuteron wave function

We have chosen a covariant normalization for the one-
particle states on the light cone:

〈p′+,p′
⊥, λ′|p+,p⊥, λ〉 = (2π)32p+δ(p′+ − p+)

· δ(2)(p′
⊥ − p⊥)δλλ′ , (A.1)

where p+ is defined in terms of the ordinary vector com-
ponents as p+ = 1√

2
(p0 + p3) and p⊥ corresponds to the

components in the transverse direction. We have to evalu-
ate matrix elements of a quark operator between deuteron
states, but eventually we have to deal with two quasi-free
nucleon states. The definition of the state of a deuteron
with momentum P and polarization λ in terms of two-
nucleon state is

|P+,P⊥, λ〉 = 1
(16π)3

∑
λ1,λ2

∫
dξ1√
ξ1

dξ2√
ξ2

δ(1− ξ1 − ξ2)

· dp1⊥dp2⊥δ(2)(P⊥−p1⊥−p2⊥)χλ(ξ1,k1⊥ , λ1; ξ2,k2⊥ , λ2)
· |p+

1 ,p1⊥ , λ1; p+
2 ,p2⊥ , λ2〉 , (A.2)

where ξi =
p+

i

P+ and the transverse momenta ki⊥ are the
transverse momenta of the nucleons in a frame where
P⊥ = 0 (hadron frame). We have also kept the notation
pi⊥ to make explicit the fact that the states are defined
in an arbitrary frame but the wave function always refers
to the hadron frame. The relationship between both sets
of coordinates is given by

ki⊥ = pi⊥ − ξiP⊥. (A.3)

Let us define the measures that take part in the inte-
grals as

[dξ] = dξ1dξ2 δ(1− ξ1 − ξ2), (A.4)

[dp⊥] = dp1⊥dp2⊥ δ(2)(P⊥ − p1⊥ − p2⊥). (A.5)

We can also perform the integrals over the transverse
momenta in the hadron frame with the measure

[dk⊥] = dk1⊥dk2⊥ δ(2)(k1⊥ + k2⊥). (A.6)

The wave function of the deuteron with polarization λ is
χλ(ξ1,k1⊥ , λ1; ξ2,k2⊥ , λ2) with λi being the polarization
of the nucleons. It is normalized according to

∑
λ1,λ2

∫
[dξ] [dk⊥]|χλ(ξ1,k1⊥ , λ1; ξ2,k2⊥ , λ2)|2 = 1.

(A.7)
By taking advantage of the properties ξ1 ≡ ξ = 1 −

ξ2 and k1⊥ ≡ k⊥ = −k2⊥ , we can further simplify the
notation in the wave function:

χλ(ξ1,k1⊥ , λ1; ξ2,k2⊥ , λ2) ≡ χλ(ξ,k⊥;λ1, λ2). (A.8)

A last remark concerns the connection between the
light-cone wave function of the deuteron and the ordinary
(instant-form) relativistic wave function obtained with dif-
ferent phenomenological potentials. Whereas the first one
is expressed in terms of light-cone coordinates, the lat-
ter one is a function of the ordinary three-vectors ki and
fulfills, in general, a Schrödinger-type equation. It can be
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shown [33] that, if we define the longitudinal momentum
from the light-cone coordinates as

kz ≡ M0(ξ − 1/2), (A.9)

where M0 is the free mass operator:

M2
0 =

m2 + k⊥ 2

ξ(1− ξ)
, (A.10)

then the eigenvalue equation fulfilled by χλ(ξ,k⊥;λ1, λ2)
can be interpreted as a Schrödinger equation, and there-
fore, it can be related to the wave function obtained from
phenomenological potentials in the instant-form formal-
ism. More explicitly:

χλ(ξ,k⊥;λ1, λ2)=
∑
µ1,µ2

[
M0

4ξ(1−ξ)

]1/2

〈λ1|R†
M (ξ,k⊥)|µ1〉

· 〈λ2|R†
M (1− ξ,−k⊥)|µ2〉 χc

λ(k;µ1, µ2). (A.11)

The global factor in the r.h.s. of the equation above
is just the Jacobian of the transformation from the vari-
ables {ξ,k⊥} to {k}. We also have the matrix elements
of the Melosh rotation, which relate the spin in the light
front with the spin in the instant form of the dynamics. Fi-
nally, the (canonical) deuteron wave function χc

λ(k;µ1, µ2)
is written as [34]

χc
λ(k;µ1, µ2) = (16π3)1/2

∑
L,mL,ms

(
1
2
1
2
1 |µ1 µ2 ms

)

· (L 1 1 |mLms λ)YL,mL
(k̂)uL(k). (A.12)

Appendix A.2. Helicity amplitudes and GPDs

We give here the kinematical coefficients that relate the
helicity amplitudes evaluated with the light-cone helicity
vectors and the generalized parton distributions. To be
consistent with the choice of a right-handed set of polariza-
tion vectors made in [8], these expressions should be used
only if ∆x < 0 in the explicit evaluation of Vλ′,λ or Aλ′,λ.
By applying parity properties, we can reduce the num-

ber of independent helicity amplitudes Vλ′,λ down to five
(that we have chosen to be V++, V00, V−+, V0+, V+0)
and to four in the pseudovector case Aλ′,λ (we keep A++,
A−+, A0+, A+0). We recall these parity and time reversal
properties:

Vλ′λ = (−1)λ′−λV−λ′−λ, (A.13)

Aλ′λ = −(−1)λ′−λA−λ′−λ, (A.14)

Vλ′λ(ξ) = (−1)λ′−λVλλ′(−ξ), (A.15)

Aλ′λ(ξ) = (−1)λ′−λAλλ′(−ξ). (A.16)
(A.17)

We set

Hi =
∑
λ′,λ

cλ
′λ
i Vλ′λ, (A.18)

H̃i =
∑
λ′,λ

c̃λ
′λ
i Aλ′λ, (A.19)

where the sum covers only the helicity amplitudes that we
have chosen as independent ones and the non-vanishing
coefficients are:

c++
1 =

1
3(1− ξ2)2

(3ξ4 − 7ξ2 − 2D(1− ξ2) + 2),

c001 =
1

3(1− ξ2)
,

c−+
1 = − 1

3D(1− ξ2)3
(2ξ2 +D(3ξ6 − 10ξ4 + 9ξ2 − 2)),

c0+1 =
2

3(1− ξ2)2

√
1 + ξ

2D(1− ξ)
(D(1− ξ2) + ξ),

c+0
1 = −c0+1 (ξ → −ξ); (A.20)

c++
2 =

2
1− ξ2

,

c−+
2 =

2ξ2

D(1− ξ2)
,

c0+2 = − 1
1− ξ

√
1 + ξ

2D(1− ξ)
,

c+0
2 = −c0+2 (ξ → −ξ); (A.21)

c−+
3 = − 1

D
,

c++
4 = − 2ξ

1− ξ2
,

c−+
4 = − 2ξ

D(1− ξ2)2
,

c0+4 =
1

1− ξ

√
1 + ξ

2D(1− ξ)
,

c+0
4 = c0+4 (ξ → −ξ); (A.22)

c++
5 = − 1

(1− ξ2)2
(ξ2 + 2D(1− ξ2) + 1),

c005 =
1

(1− ξ2)
,

c−+
5 = − 1

D(1− ξ2)3
(2ξ2 +D(1− ξ4)),

c0+5 =
2

(1− ξ2)2

√
1 + ξ

2D(1− ξ)
(D(1− ξ2) + ξ),

c+0
5 = −c0+5 (ξ → −ξ). (A.23)
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In the pseudovector case they are:

c̃++
1 =

1
(1 +D(1− ξ2))

,

c̃−+
1 =

D(1− ξ2)
ξ(1 +D(1− ξ2))

,

c̃0+1 =
(1 + ξ)

√
2D(1− ξ2)

2ξ(1 +D(1− ξ2))
,

c̃+0
1 = −c̃0+1 (ξ → −ξ); (A.24)

c̃++
2 =

1
4(1 +D(1− ξ2))

,

c̃−+
2 =

ξ2 −D(1− ξ2)2

4Dξ(1− ξ2)(1 +D(1− ξ2))
,

c̃0+2 = − (1 + ξ)
4ξ

√
2D(1− ξ2)(1 +D(1− ξ2))

,

c̃+0
2 = −c̃0+2 (ξ → −ξ); (A.25)

c̃++
3 = − ξ

4(1 +D(1− ξ2))
,

c̃−+
3 = − 1

4D(1− ξ2)(1 +D(1− ξ2))
,

c̃0+3 =
(1 + ξ)

4
√
2D(1− ξ2)(1 +D(1− ξ2))

,

c̃+0
3 = c̃0+3 (ξ → −ξ); (A.26)

c̃++
4 = − 1

1− ξ2
,

c̃−+
4 = − ξ

D(1− ξ2)2
,

c̃0+4 =
1

(1− ξ)
√
2D(1− ξ2)

,

c̃+0
4 = −c̃0+4 (ξ → −ξ). (A.27)

In the forward limit (ξ → 0, t → 0) we get the simpli-
fied expressions

H1(x, 0, 0) =
1
3
(2V++ + V00), (A.28)

H5(x, 0, 0) = (−V++ + V00), (A.29)

H̃1(x, 0, 0) = A++. (A.30)

The integral over H1(x, 0, 0) is the parton number,
which imposes a serious check on the construction of the
helicity amplitudes in the forward limit.

Appendix A.3. Parameterization of the nucleon matrix
elements

In a symmetric frame, where P̄µ = (pµ + p′µ)/2 has no
transverse momentum, we take the following parameteri-

zation:∫
dκ
2π

eiκx 〈p′, λ′|ψ̄q
(
−κ

2

)
γ+ψq

(κ

2

)
|p, λ〉 =

ū(p′, λ′)
[
γ+Hq(x, ξ, t) + i

σ+α∆α

2m
Eq(x, ξ, t)

]
u(p, λ),

(A.31)

∫
dκ
2π

eiκx 〈p′, λ′|ψ̄q
(
−κ

2

)
γ+γ5ψq

(κ

2

)
|p, λ〉 =

ū(p′, λ′)
[
γ+γ5H̃

q(x, ξ, t) +
γ5∆

+

2m
Ẽq(x, ξ, t)

]
u(p, λ),

(A.32)

where the integration path must be understood along the
“−” direction. By using light-cone helicity states, which
is close to the usual helicity in frames where the parti-
cle moves fast to the right and allows to get compact and
elegant expressions, we have to insert in the previous equa-
tions the following results:

ū(p′, λ′)γ+u(p, λ) = 2p̄+
√
1− ξ2δλλ′ ,

ū(p′, λ′)γ+γ5u(p, λ) = 2λ2p̄+
√
1− ξ2δλλ′ ,

ū(p′, λ′)i
σ+α∆α

2m
u(p, λ) = 2p̄+

·
(
− ξ2√

1− ξ2
δλλ′ +

√
t0 − t

2m
ηλδλ,−λ′

)
,

ū(p′, λ′)
∆+

2m
γ5u(p, λ) = 2λ2p̄+

·
(
− ξ2√

1− ξ2
δλλ′ + ξ

√
t0 − t

2m
ηλδλ,−λ′

)
, (A.33)

where
ηλ =

2λ∆x − i∆y

|∆⊥| (A.34)

and ∆µ = p′µ − pµ.

References

1. D. Müller, D. Robaschik, B. Geyer, F.M. Dittes, J. Hořeǰsi,
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